
Status and Directions for the PYRAMID Parallel Unstructured AMR Library

Charles D. Norton John Z. Lou
Jet Propulsion Laboratory

California Institute of Technology
MS 168-522, 4800 Oak Grove Drive

Pasadena, CA 91109-8099 USA
Charles.D.Norton@jpl.nasa.gov

Thomas A. Cwik

Abstract

This is a status report on our progress with the develop-
ment of PYRAMID, a Fortran 90/95-based library for par-
allel unstructured adaptive mesh refinement. The library
has been designed to simplify the use of adaptive methods
in computational science applications by introducing many
advanced software engineering features. In this paper, de-
sign and performance issues are described concluding with
a discussion of our future development plans.

1. Introduction

During the last 1.5 work years we have been actively
developing a new kind of library for parallel unstructured
adaptive mesh refinement called PYRAMID. While the soft-
ware supports triangular and tetrahedral meshes, load bal-
ancing, mesh migration, partitioning, adaptive mesh quality
control, and visualization, all in parallel, its object-based de-
sign in Fortran 90/95 and its ease of use have increased its
appeal. In fact, ease of use concerns, as well as requirements
specified by actual and potential users, drive library devel-
opment. In this paper we will describe the current status of
the library and new directions that expand on material pre-
sented at the Irregular 1998 workshop [5].

2. PYRAMID Library Overview

Parallel adaptive methods support the solution of com-
plex problems using grid-based techniques. Software devel-
opment for unstructured adaptive mesh refinement focuses
on simplifying how the user interacts with the grid for prob-
lems that exhibit complex geometry. Research on how this
is best achieved is on-going since meshes can be adaptively
refined, partitioned, and load balanced using a variety of ap-
proaches.

Our library supports automatic mesh quality control en-
suring that elements with poor aspect ratios are not created.
This is achieved by actively redefining how an element is
refined to prevent the creation of narrowly shaped triangles
and tetrahedrons. The ParMetis graph partitioning software,
from the University of Minnesota, is used with our mesh
migration algorithms to load balance the adaptively refined
mesh [4]. Our development in Fortran 90/95 allows for
object-based design where a mesh can be created and ma-
nipulated using high-level library commands. A complete,
minimal, PYRAMID program is shown in Figure 1.

program pyramid example
use pyramid module
implicit none
type (mesh), dimension(2) :: meshes

call pamr init()
call pamr create incore(meshes(1), m̈esh data)̈
call pamr repartition(meshes(1))
do i = 1, refinement depth

call pamr error est(meshes(1), meshes(2))
call pamr logical amr(meshes(1))
call pamr repartition(meshes(1))
call pamr physical amr(meshes(1), meshes(2))

end do
call pamr visualize(meshes(2), m̈esh.plt)̈
call pamr finalize(mpi active = .true.)

end program pyramid example

Figure 1. A minimal PYRAMID program.

Many of these routines accept Fortran 90/95 optional ar-
guments that allow for additional control over the actions
taken. When these options are not specified a reasonable de-
fault action is taken. Furthermore, for the most sophisticated
routines, keyword arguments may optionally be specified to
visually remind the user how various arguments are used.



Figure 2. Artery mesh segment (courtesy of SCOREC, Rensselaer Polytechnic Institute).

The new features of Fortran 90/95 allow for complex data
structures to be created, and used, while supporting encapsu-
lation of related concepts in modules. Use of modules make
the data and routines they contain available to program units
and they can interact to provide increased functionality. Fea-
tures such as smart pointers, generic interfaces, whole and
array subset operations, and dynamic storage provide the
modern software principles required for this work. This
Fortran-based approach will simplify the union of adaptive
meshing with existing Fortran-based solvers. This has re-
sulted in a following within NASA, and elsewhere, regard-
ing our progress with PYRAMID—this forms the primary
purpose and focus of our article.

3. Features and New Directions

Demonstration versions of the PYRAMID library are
accessible from the NASA HPCC Software Repository
(http://ess.gsfc.nasa.gov/catalog.pl?rh=12). To date, the li-
brary has been used primarily on demonstration meshes to
evaluate functionality and to test various features. On oc-
casion, however, it has been applied to applications within
JPL including adaption of multi-scale meshes for active de-
vice modeling [1].

Figure 2 shows a section of a tetrahedral finite element
artery blood flow mesh generated by the Scientific Compu-
tation Research Group (SCOREC) at Rensselaer Polytech-
nic Institute [3] based on a geometry provided by Taylor et.

al [7]. This mesh contains 1.1 million elements where the
PYRAMID repartitioning, load balancing, and mesh migra-
tion are illustrated.

Another example, shown in Figure 3, demonstrates how
a muzzle brake/shock tube mesh with 34,214 elements has
been repartitioned and load balanced by PYRAMID. These
meshes were produced by the program segment in Figure 1
where the refinement loop was not called. (Adaptive refine-
ment will be discussed later.) The library simplifies a com-
plex parallel operation into simple, easy to understand, op-
erations.

One of the main problems with most adaptive mesh li-
braries is that accessing the mesh structure can be very
awkward and confusing. Also, useful mathematical rou-
tines are not available as library commands and portabil-
ity/performance issues across traditional supercomputers
and clusters are not measured. Our current work has ex-
amined these issues and our new directions are aimed at in-
creased functionality, such as parallel mesh generation sup-
port and other features.

3.1. PYRAMID Algorithms and Performance En-
hancements

There are many techniques that PYRAMID employs on
a software engineering and algorithm level to support un-
structured adaptive meshing on triangular and tetrahedral
meshes. We utilize the object-oriented aspects of For-



Figure 3. Muzzle brake/shock tube mesh
(courtesy of SCOREC, Rensselaer Polytech-
nic Institute).

tran 90/95 [2] to define a mesh data structure that provides
efficient access to all aspects of a mesh geometry in mul-
tiple dimensions. An automatic mesh quality control fea-
ture also ensures good element geometry, based on a green’s
refinement method, as adaptive refinement is applied. As-
pects of our algorithm design are described, but more details
are available elsewhere [6]. Every operation the library per-
forms is a parallel operation.

Fortran 90/95 modules allow us to build software com-
ponents that encapsulate various features of the data struc-
ture, such as connectivity and geometric boundary features,
in a way that insulates such details from library users. Since
module components can be specified as public and/or pri-
vate our design uses information-hiding to protect and sep-
arate data structure internals from features a user requires.
We use dynamic structures for memory management, but
this can be done safely and efficiently since the proper tech-
nique can be selected based on the circumstance (pointers
are never used when an allocatable array will work just as
well).

MPI is used for message passing and all data structures
managed by the library are distributed data structures. When
adaptivity is applied a significant amount of work involves
managing the distributed data structure to ensure that the
mesh connectivity is efficiently specified. We employ heap

Figure 4. Refined Muzzle brake/shock tube
mesh.

sorting techniques for efficient mesh reconstruction during
data mesh migration among distributed processors and for
data access during adaptive refinement. This allows the li-
brary to quickly access any mesh component using binary
search.

The adaptive refinement stage consists of two parts, a
logical followed by a physical refinement operation. Refine-
ment is specified by an error indicator which is defined geo-
metrically for the examples in this paper. Logical refinement
uses edge marking to specify how elements in the coarse
mesh will be refined, but this stage does not actually cre-
ate any elements. Based on this marking a refinement pat-
tern for the element is determined and matched to a library
of refinement patterns that are pre-defined. In addition, the
elements are weighted based on these patterns and this in-
formation is provided to the load balancing and mesh mi-
gration components to compute a balanced partitioning for
the set of elements that will be created in the physical refine-
ment stage. Note, however, that users can always decide if
repartitioning is needed.

The logical refinement also manages mesh quality con-
trol by detecting when poor aspect ratio elements will be
created. If such elements may be introduced, based on ex-
amining when and how transitional elements are created, a
refinement template will be applied that replaces these ele-
ments with new elements of higher quality. This preserves



Figure 5. The effect on mesh quality with and without automatic quality control.

the structure of the mesh better than smoothing techniques
at the expense of slightly more elements. An example of
the importance of maintaining mesh quality during adaptive
refinement is shown in Figure 5. The physical refinement
stage creates the new elements based on the logical refine-
ment specification. Of course, the coarse logical elements
are migrated to new processors as needed before physical re-
finement is applied.

The logical refinement stage requires minimal communi-
cation to resolve refinement issues at partition boundaries.
The physical stage is entirely local requiring no communi-
cation. This allows each of these stages to operate in a nearly
embarrassingly parallel manner.

When applying repartitioning and mesh migration to the
artery in Figure 2 we observed message passing race con-
ditions that hindered performance significantly. Further-
more, certain mesh migration algorithms could potentially
deadlock based on the availability of MPI internal mes-
sage buffers. These subtle effects resulted from algorithms
that sent and received messages as frequently as possible.
The irregular nature of the communication imposed addi-
tional performance problems since message collisions on
the cluster switch encouraged successive retransmissions.
The communication structure for adaptive meshing prob-
lems is irregular in that the amount of data sent and re-
ceived among processors is imbalanced, but it is largely pre-
dictable. These factors caused us to experience an average
of about 1MB per second, on a 100BaseT full-duplex Ether-
net connection, for data load balancing and mesh migration
for the artery mesh. This was not exhibited in other mesh
test cases.

We decided to introduce new algorithms for communi-

cation in the mesh migration stages. We developed a tree-
based exchange algorithm that works for any number of
processors. This algorithm is logarithmic, completely non-
blocking and it can utilize full-duplex connections for ma-
chines that support this capability. It represents an exten-
sion of a pair-wise exchange utilizing techniques that don’t
require an actual communication tree to be physically con-
structed in memory. Additionally, the algorithm allows for
data to be reduced during each iteration. Our original al-
gorithms were very aggressive in conserving memory and
this was a contributor to the performance problem we exhib-
ited for the artery mesh. The new algorithm trades time for
space, but the performance has been enhanced significantly.
We now get a communication rate of nearly 11MB per sec-
ond on the 100BaseT connection.

3.2. Object-Based Access to Mesh Structure

The sample program showed how a mesh object could
be created and manipulated through member routines of the
pyramid module. This module acts like a C++ class since it
defines the mesh components, the routines that manipulate
the mesh, and it restricts the level of accessibility to the in-
ternal mesh data structure. Typically, a user must know the
internal organization of the mesh to access information such
as the coordinates of the first node of the second element,
seen in Figure 6.

This is awkward particularly if the data is distributed, the
mesh data structure is complex, and you don’t know the pro-
cessor on which this information is located. Figure 7 shows
how our library commands simplify this process.

Notice how the use of keyword arguments allows either



type (mesh) :: this
real, dimension(3) :: xyz pos
xyz pos = &

this%nodes(this%elements(2)%node indx(1))%coord

Figure 6. Awkward data access scheme.

type (mesh) :: this
real, dimension(3) :: xyz pos
real, dimension(3,4) :: all pos
xyz pos = pamr element coord(this, element indx=2, &

node indx=1)
all pos = pamr element coord(this, element indx=2)

Figure 7. PYRAMID data access scheme.

a specific, or all, node coordinates to be returned. Keyword
arguments make the specified values clear, and they can be
variables although constants are shown in this example. The
return variable must be conforming with the result of the call
and the compiler can detect this. Many data access routines
are included in PYRAMID.

Referring to terms defined on mesh components by user-
defined names is also useful. We have added commands that
allow one to define the number of terms on mesh compo-
nents and to map user-defined names to these terms as shown
in Figure 8.

type (mesh) :: this
real, pointer, save :: heat, mx, my, mz
call pamr define mesh terms(this, &

num element terms=20, num face terms=9,&
num edge terms=4)

call pamr map mesh terms(this, element indx=10, &
face indx=3, edge indx=2, a1=heat, a2=mx, &
a3=my, a4=mz)

heat=10.5 ; mx=3.1 ; my=5.0 ; mz=12.4

Figure 8. User-defined mesh term naming.

In the example each element may contain 20
terms/variables each face has 9, and 4 are associated
with each edge. The mapping allows the 4 variables heat,
mx, my, and mz to be assigned to the indicated edge where
assigning/reading these values can be done through the
variables. Although constants are shown variables may be
used. If the mapping only specifies an element then the
variables are assigned to that element. If the element and
face are specified then the indicated face is assigned the
user-defined variables, and so on.

3.3. Mathematics Features

Numerous mathematical functions have been added to
ensure that users get consistent results from the mesh data
structure. The example in Figure 9 shows how a signed lo-
cal unit normal basis for a specific face, or all faces, on an
element may be returned. The basis consists of two unit nor-
mal vectors and the signed local unit normal for each face.
The result format is indicated in the user manual where the
values assigned must be conforming.

module pamr interface module
function face normalbasis one(this, element indx, &
face indx) result(n basis)

type (mesh), intent(in) :: this
integer, intent(in) :: element indx, face indx
real, dimension(3,3) :: n basis

end function

function face normalbasis all(this, element indx) &
result(n basis)

type (mesh), intent(in) :: this
integer, intent(in) :: element indx
real, dimension(3,3,4) :: n basis

end function
end module pamr interface module

module pyramid module
use pamr interface module

interface pamr face normalbasis
module procedure face normalbasis one
module procedure face normalbasis all

end interface
! additional interfaces...

end module pyramid module

program pyramid example
use pyramid module
integer :: the elem, the face
type (mesh) :: this
real, dimension(3,3,4) :: all normals
real, dimension(3,4) :: face normal

the elem = 100 ; the face = 3
face normal = pamr face normalbasis(this, &

element indx=the elem,face indx=the face)
all normals = pamr face normalbasis(this, &

element indx=the elem)
end program pyramid example

Figure 9. Mathematical mesh functions.

This returns to the user the [x, y, z] position of the 3 nor-
mal basis vectors for each face using a specified ordering. If



Figure 10. Performance after three refinement
levels of the muzzle-brake mesh.

face indx is specified this result can be returned for a specific
face using the same command since Fortran 90/95 generic
interfaces are supported, as shown in Figure 9. Other rou-
tines compute element and face centroids, volumes, areas
and so on. Such features are added by user request.

3.4. Performance on Beowulf-Clusters, SGI Origin,
and Cray T3E

The Pyramid Library has been ported among Beowulf-
Cluster systems, the SGI Origin, Cray T3E, and the IBM
SP. Performance comparisons among the Beowulf cluster
and SGI Origin are emphasized since the other systems were
not available when these runs were performed. The Cray
T3E results are based on runs performed before the sys-
tem was decommissioned. The Beowulf cluster system con-
sists of 21 dual-processor Pentium III 800MHz nodes with
100BaseT Ethernet for communication.

Figure 4 shows three levels of refinement for the tube sec-
tion from Figure 3. The performance result in Figure 10
shows that the SGI O2K scales very well, even though the
processor is much slower than the Pentium III for large in-
put sizes. (Shared-memory message passing was not used
for any of these systems.) The Beowulf-cluster competes
well in comparison, but the network does hinder the per-
formance of the fast processor for large problem sizes as
seen in Figure 11. We expect to switch from the 100BaseT
Ethernet to a Myrinet network shortly, so updated perfor-
mance results will be available at our web site. The muz-
zle brake mesh contains 34,214 elements where 225,677,

Figure 11. MBytes transmitted in pairwise
processor data exchange between 2 PEs.

350,847, and 1,264,443 elements are created after the 1st,
2nd, and 3rd refinements respectively.

On a small number of processors we see that the cluster
can compete, and sometimes outperform, the SGI O2K, but
as the number of processors increases the SGI gives better
overall performance. It is interesting to examine how time
is spent in the calculation. In Figure 12 we see that the SGI
outperforms the Beowulf on 32 processors at each level of
refinement, however, the percentage improvement is larger
for the Beowulf cluster compared to the SGI O2K as the
problem size grows during adaptive refinement.

In Figure 13 we compare the performance of the old mesh
migration algorithms on the earthquake mesh to the new ex-
change algorithm previously described. The improvement
in performance for three levels of refinement on 8 processors
is dramatic. In fact, the largest percentage gain is on the Be-
owulf cluster where an improvement in the communication
scheme clearly benefited this architecture. The T3E was not
available for comparison, but comparable improvements are
expected.

Looking further into the time spent in adaptive refine-
ment (logical and physical) and mesh migration in Figure 14
the effect of the network is clear for the Beowulf cluster. Re-
member that there is limited communication in the refine-
ment stage which indicates that the Beowulf might outper-
form the SGI O2K in this stage if the network was faster.
(This has been observed on smaller numbers of processors.)
The migration times would also benefit from a faster net-
work speed for the large messages sent in this stage. We es-
timate that the SGI has a 7 times network speed advantage
on average during this stage.



Figure 12. Earthquake mesh performance
over three refinement levels on 32 PEs.

In these performance measurements the time to load and
distribute the mesh data file among processors is included.
The migration time includes mesh repartitioning, load bal-
ancing, reconstruction into the new mesh data structure and
data migration among the processors.

In Figure 15 we see that the Beowulf cluster performs
very well when compared to the SGI O2K for mesh reparti-
tioning, dynamic load balancing, and migration of the artery
mesh. Again, the network dominates the cluster for larger
number of processors, but the per-node processor perfor-
mance is most likely higher. The number of elements in this
mesh is 1,103,018.

The communication performance enhancements have not
yet been introduced into the refinement code, but this will
be investigated. A number of geometric considerations were
also introduced to reduce data communications. We feel that
additional optimizations may be possible, but these are only
introduced when the fundamental organization of the soft-
ware can be preserved.

3.5. PYRAMID for Mesh Generation

Some users are interested in mesh generation on paral-
lel computers using PYRAMID. In these instances an initial
mesh is provided and Pyramid’s refinement and load balanc-
ing algorithms uniformly increase the resolution of an ini-
tial coarse mesh as shown in Figure 16. The library package
contains routines to convert a user’s mesh into the PYRA-
MID mesh data format. There are also auxiliary routines
that convert these meshes into distributed format for parallel
I/O, often required for large meshes.

Figure 13. Performance of algorithm modifi-
cations on the earthquake mesh for 8 PEs.

The library performs refinement based on a per-element
error indicator, so we provide the means to apply unit error
throughout the mesh for this capability.

3.6. Next Generation Features

Current work focuses on adding user-controllable bound-
ary zones, interpolation methods among mesh levels, and
defining straightforward ways to include error-estimation
routines to drive the adaptive process. We may consider
adding coarsening, but this will require careful planning for
integration with the automatic mesh quality control features.

The demonstration version of the software is available
from our web site (http://hpc.jpl.nasa.gov/APPS/AMR), but
a number of the features described here are not included in
that version. To ensure our design philosophy is preserved
we add new functionality carefully. Anyone interested in
contributing ideas is welcome to contact the authors.

4. Acknowledgment

We appreciate many helpful discussions with Viktor K.
Decyk and Edward S. Vinyard. This work was developed at
the Jet Propulsion Laboratory, California Institute of Tech-
nology under a contract with the National Aeronautics and
Space Administration.

References

[1] T. A. Cwik, R. Coccioli, G. Wilkins, J. Z. Lou, and C. D. Nor-
ton. Multi-Scale Meshes for Finite Element and Finite Vol-



Figure 16. Use of mesh quality control feature for mesh generation.

Figure 14. Earthquake mesh refinement and
migration over three adaptive levels on 32
PEs.

ume Methods: Active Device and Guided-Wave Modeling.
In Proc. AP2000 Millennium Meeting, Davos, Switzerland,
April 2000.

[2] V. K. Decyk, C. D. Norton, and B. K. Szymanski. How to Ex-
press C++ Concepts in Fortran 90. Scientific Programming,
6(4):363–390, Winter 1997. IOS Press.

[3] J. E. Flaherty and J. D. Teresco. Software for Parallel Adap-
tive Computation. In M. Deville and R. Owens, editors, Proc.
16th IMACS World Congress on Scientific Computation, Ap-
plied Mathematics and Simulation, Lausanne, 2000. IMACS.
Paper 174–6.

[4] G. Karypis, K. Schloegel, and V. Kumar. ParMetis: Parallel

Figure 15. Performance for mesh repartition-
ing and migration of the artery mesh.

Graph Partitioning and Sparse Matrix Ordering Library. Tech-
nical report, Dept. of Computer Science, U. Minnesota, 1997.

[5] J. Z. Lou, C. D. Norton, and T. Cwik. A Robust Parallel
Adaptive Mesh Refinement Software Package for Unstruc-
tured Meshes. In Proc. Fifth Intl. Symp. on Solving Irregularly
Structured Problems in Parallel, 1998.

[6] J. Z. Lou, C. D. Norton, and T. Cwik. The Development of a
Parallel Adaptive Refinement Library for 2D and 3D Unstruc-
tured Meshes. In Advanced Simulation Technologies Confer-
ence (ASTC), San Diego, CA, April 1999.

[7] C. A. Taylor, T. J. R. Hugues, and C. K. Zairns. Finite Element
Modeling of Blood Flow in Arteries. To appear, Comp. Meth.
in Appl. Mech. and Engng., 1999.


